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Abstract

An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented

in MHOST--a mixed-iterative finite element analysis computer program developed by NASA

Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative anal-

ysis is examined through a set of convergence studies. Membrane and bending behaviors

of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Gen-

erally, the membrane results are excellent, indicating the implementation of elastic-plastic

mixed-iteratlve analysis is appropriate.
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Mixed constitutive matrix

Strain-displacement matrix

Body force

Projection matrix

Elastic constitutive matrix

Mixed strain-displacement matrix

Nodal force

Shear modulus

Plastic modulus

Yield surface parameter

Shape function

Shape function for displacement

Shape function for stress

Shape function for strain

Normal to yield surface

Radius of yield surface

Residual force

Traction force

Nodal displacement

Back stress

Nodal stress

Nodal deviatoric stress

Nodal trial stress

Nodal strain

Nodal plastic strain

Effective plastic strain

Plastic consistency parameter

Rate of change



Introduction

Sinceits inception, many attempts to improve the performance of displacement-based

finite element procedures have been made. Here, the primary focus is a mixed-iterative finite

element approach, particularly for the elastic-plastic analysis.

An economical, and easily adaptable, iterative stress-smoothing algorithm was initially

proposed by Loubignac et al. [Ref. 1 and 2], which enhanced the existing displacement-based

computer codes without requiring fundamental modifications. More recently, gienkiewicz et

al. [Ref. 3 and 4] presented an iterative approach to solve mixed finite element equations

derived from a Hu-Washizu variational principle. This procedure bypasses the complexity

related to the direct solution of mixed equations. In many ways, the resulting iterative

method is equivalent to the previously mentioned algorithm. It is certainly reassuring to

realize that Loubignac's algorithm, initially developed based on engineering ingenuity, does

have a formalized variational basis. Throughout this paper, the term mixed-iterative is used.

This is the concept on which MHOST--a mixed-iterative finite element code developed under

the sponsorship of NASA Lewis Research Center--is based.

As shown in the literature, the advantage of the mixed-iterative method is its accu-

racy in the stress and strain solutions; sometimes improved results in displacement may be

obtained as well. Therefore, it seems appropriate to fully utilize the dominating feature of

the iterative method in material nonlinear analysis. To a certain extent, material nonlin-

ear computations are governed by stress intensity more than geometrical nonlinear analysis.

Here, material nonlinearity due to rate-independent plasticity is considered.

Following the description of the mixed-iterative procedure, the implementation of an

elastic-plastic algorithm in MHOST is described. The algorithm is based on Von Mises and

associative flow criteria, and includes both isotropic as well as kinematic hardening options.

This implementation is made for a 4-node quadrilateral shell finite element. Furthermore,

the promising quality and economy of the mixed iterative method in elastic-plastic analysis

are measured against the performance of the corresponding "traditional" displacement-based

method. Convergence studies are conducted to quantitatively assess the speed-up provided

by the iterative algorithm, i.e., the reductions of discretization requirements and computa-
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tional expenses.

In addition to the existing mixed-iterative procedure,the option for the displacement-

basedanalysis is made availablein MHOST. The procedureto activate this option is given

in Appendix A. This addedcapability allows the samecode, i.e., MHOST, to be used for

judging the performanceof mixed-iterative versusdisplacement-basedmethods. Hence,the

objectivity of the outcomeof the presentstudy is achieved,wherethe resultsobtained reflect

the true nature of the methods consideredrather than the variations of programming tech-

niques. The elastic-plastic algorithm implementedis first verified against a well-established

displacement-basedcodein order to demonstrateits validity. This is shownin Appendix B.

The presentstudy doesnot claim to be exhaustive,but it providesindications on both

the strengths and weaknessesof the mixed-iterative method. This information seemsto be

lacking in the existing literature.

Mixed-Iterative Finite Element Method

Based on a Hu-Washizu variational principle, a three-field mixed finite element for-

mulation can be established, with displacement, stress, and strain as the essential variables

[Ref. 5]. The resulting finite element equations are as follows:

A -C 0

-C T 0 E

0 E T 0
(//°/o" -- 0

u f

(1)

where

A = _NTDN, dfl (2)

C = faNTN_ dfl (3)

E = fa NTB dn (4)

f = fnNTb d_ + fr NTt dF (5)

Some diagonal terms of the above linear algebraic equations are zero, indicating that an

equation solver capable of handling indefinite matrices is needed. Furthermore, the addi-

tional nodal variables, i.e., stress and strain, enlarge the size of the equations, hence requiring
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more computations to solve the problem. An iterative approach to solve the mixed equa-

tions, known as mixed-iterative method [Ref. 3, 4 and 5], circumvents the above mentioned

obstacles. This method is described below.

In its practical form, the iterative procedure adopts the following modifications:

1. The same shape functions are used for displacement, stress, and strain.

N,, = N_ = N_ = N

2. To save computations, the off-diagonal coefficients of the C matrix are neglected

(lumped).

C = diagonalized C

3. Constitutive equations are evaluated at the nodes.

The iteration can be briefly described in the following steps:

1. Initiate iteration with u0 = 0, ao = 0, eo = 0, and ro = -f.

2. Solve for nodal displacements:

Un+ 1 _ U n -- (fn BTDB di2) -1 rn

3. Calculate smoothed nodal strain by projection, and evaluate stress at the nodes:

4. Compute residuals:

_'n+l = C-1E Un+l

a,+1 = [D _n+l]node

5. Go back to step 2 until convergence to a specified tolerance is obtained.

rn+ 1 ---- ETO'n+I -- f



In other words, the process starts with a displacement-based solution and proceeds to

smooth-out inter-element strain discontinuity. Stresses obtained following this procedure

violate nodal force equilibrium. These unbalanced forces are treated as residuals, which are

iteratively reduced, and applied to improve the solution obtained from the previous step.

This procedure is similar to the constant-stiffness iterations used in nonlinear analysis. In this

way, the method can be seen as a means of iteratively improving displacement-based solu-

tions, which is equivalent to the iterative stress-smooth!ng procedure proposed by Loubignac

et al. [Ref. 1 and 2].

The mixed-iterative solution is capable of capturing some of the effects produced by

mesh refinements, i.e., continuity of stress and strain as well as increased accuracy, with

less computational resources. On the other hand, displacements produced by the iterative

method may or may not be improved, because the procedure does not increase the actual

number of degrees of freedom. The resulting adjustment on displacements is solely due

to residual iterations. The mixed-iterative result is usually more flexible than the solution

obtained by a displacement-based method. The former tends to compensate the inherently

over-stiff behavior of the latter. However, the increased flexibility may sometimes over-

estimate the solutions.

By the nature of the method, significant improvements on stress and strain solutions

can usually be expected when coarse finite element meshes are used. Despite the advantages

of the mixed-iterative method, however, it must be understood that the discontinuities to

be smoothed are those originating from finite element discretizations, not from the physics

of the problem.

Elastic-Plastic Mixed-Iterative Analysis

The accuracy of stress and strain solutions has a direct effect on the quality of elastic-

plastic analysis. This is because the incremental computation of elastic-plastic constitu-

tive relations is governed by the stress and strain at each element, which indicates that

el_tic-plastic mixed-iterative analysis may give better results than the displacement-based

procedure.
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Another advantageof the iterative method in elastic-plasticanalysisis the evaluationof

constitutive relations at the nodes. Due to the nature of finite element interpolations, nodal

points contain the extreme values of the given element. Hence, a more accurate assessment

of the on-set of yielding, as well as the progress of plastic flow, can be made at the nodes.

From this point of view, evaluation of yield criteria at the integration points constitutes an

approximation, where the values at the integration points tend to converge to those of the

nodes with mesh refinements.

Implementation of an elastic-plastic algorithm in the mixed-iterative code MHOST

is direct. The additional ingredient required is the elastic-plastic constitutive relations.

The formulations presented in this paper are for the rate-independent plasticity based on

Von Mises yield surface, associative flow rule, isotropic and kinematic hardening, and small

deformation assumptions.

The mathematics of solving elastic-plastic constitutive equations falls into the category

of initial-boundary value problem [Ref. 6]. Basically, given the initial values of stress and

radius of yield surface, and with the time-history of strain provided, the evolution of stress

and radius of yield surface are to be determined by integrations. In the mixed-iterative

formulation, the above mentioned process is evaluated at the nodes. The mixed-iterative

formulation of the elastic-plastic analysis satisfies the following conditions:

• Incremental constitutive equations.

b = [D (t_ - t_P)l,od_ (6)

• Associative flow rule.

• Unit normal.

{

t_e = _ 0 If Elastic (7)

[ _, n If Plastic

a'
n = - (s)

R

• Consistency condition.

nT _ (9)
,x = - +,.,,
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• Yield criteria.

• Trial rate of stress.

f(a) __ k 2 }nT bt_ <-- 0

fnT _tr > 0

Elastic (10)

Plastic (11)

bt,- = [D_]node (12)

• Isotropichardening: Evolution equation for the radius of yield surface.

= H' (13)

• Kinematic hardening: Evolution equation for the back stress.

a = -2H' P (14)
3

A widely-used numerical algorithm known as the radial-return method is implemented

to integrate the above equations. This is an elastic-predictor-plastic-corrector procedure

initially proposed by Wilkins [Ref. 7]. Krieg and Key [Ref. 8] developed the algorithm further

to account for strain hardening. In essence, the plastic stress state defined by the radial-

return algorithm is given by the intersection of the yield surface with the line connecting the

center of the yield surface and the trial stress.

Numerical Performance

The purpose of this numerical study is to examine, in the context of elastic:plastic

analysis, the capability of the mixed-iterative method in providing accurate solutions using

less computational resources.

To accomplish the stated objective, convergence studies using increasingly refined finite

element meshes are performed. Displacement'based solutions are used as the benchmark to

=
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measure the performance of the mixed-iterative method. This is done for the following

reason: At the limits of continuous mesh refinements, the solutions obtained using the

mixed-iterative approach will be identical to those given by the displacement-based method.

This is because the resulting strain field will already be continuous, and therefore smoothing

will be obviated. However, the goal is to determine how much the mixed-iterative procedure

is capable of enhancing convergence, i.e., using coarser meshes to provide solutions with

comparable accuracy as those given by the displacement-based methods. In this way, the

effectiveness of the mixed-iterative method in accelerating convergence, and reducing total

computation time, is objectively assessed.

Uniform finite element meshes are used throughout this study. Mesh refinements are

made by bisecting each of the existing dements into four new elements. The three problems

used in this study, as depicted in Figures 1 to 3, are modeled using 4-node quadrilateral finite

elements. Four increasing levels of refinement are used, thus providing five finite element

meshes for each problem.

Problem 1:

Cook's skewed cantilever is widely used as a benchmark for the performance of mem-

brane behavior with a distorted mesh. The cantilever of unit thickness is subjected to a load

of 3.0 Newtons, uniformly distributed along the right edge as shown in Figure 1. Isotropic

hardening elastic-plastic material is considered for this problem, with modulus of elasticity

of 1.0 MPa:, Poisson's ratio of 0.33, yield stress of 0.25 MPa, and the hardening slope of 30.0

% of the elastic slope. The number of elements used for the convergence study are tabulated

as follows:

Mesh

A1

A2

A3

A4

A5

Number of Elements Number of Nodes

3xl = 3

6x2 = 12

12 x 4 = 48

24 x 8 = 192

48 x 16 = 768

4x2 = 8

7x3 = 21

13 x 5 = 65

25 x 9 = 225

49 x 17 = 833



Excellent performance of the mixed-iterative method is shown by this problem. Fig-

ures 4 to 7 demonstrate the accelerated convergence of the displacement as well as the stress

produced by this method. Using mesh A3, for example, the mixed-iterative solution achieved

the same or better accuracy as displacement-based results given by the A4 mesh. Further-

more, for the same accuracy the iterative procedure requires only 52 % of the computer time

consumed by the displacement-based solution.

The results shown in Figure 4 and 5 indicate an increase in the mixed-iterative con-

vergence rate for the elastic-plastic analysis, as compared to the elastic case. For instance,

to obtain less than 5.0 % error in the elastic solution requires mesh A3, while the same level

of accuracy for the elastic-plastic result can be obtained using the A2 mesh. This clearly

demonstrates the increased effectiveness of the mixed-iterative procedure when it is applied

to this elastic-plastic analysis problem.

Problem 2:

Figure 2 shows a 900 V-notched bar, with a notch-depth to half-width ratio of 1 to 2.

The unit-thickness notched bar is under axial load of 6.0 Newtons, uniformly distributed at

each end. The material is elastic-perfectly-plastic with a yield stress of 0.15 MPa, a modulus

of elasticity of 1.0 MPa, and a Poisson's ratio of 0.33. Due to symmetry, only a quarter of the

notched bar is modeled in the finite element mesh. This problem considers the performance

of the mixed-iterative method specifically for the effect of stress concentration. The number

of elements used in each level of mesh refinements are as shown in the table below.

Mesh Number of Elements Number of Nodes

B1

B2

B3

B4

B5

4x2 = 8

8x4 = 32

16 X 8 = 128

32 x 16 = 512

64 x 32 = 2048

5 x 3 = 15

9 × 5 = 45

17 x 9 = 153

33 x 17 = 561

65 x 33 = 2145

As displayed in Figured 8 to 12, excellent mixed-iterative results are given by this prob-

lem. Axial displacement (Figure 8) produced by the mixed-iterative method is on the flexible
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side ascomparedto the "stiff" displacement-basedsolution. However,the differenceis less

than 1.0 % and, arguably, the displacement-basedsolution has yet to be fully converged.

So, it is conceivablethat the mixed-iterative result might be more accurate. In any case,

the overall performanceof the mixed-iterative method showsimprovementsin the rate of

convergence,for the displacementaswell asthe stress.

Stressesat the critical region,i.e., in thevicinity of the notch, areaccuratelyrepresented

by the mixed-iterative solutions. At the tip of the notch, the iterative solution is able to

better represent the uniaxial stress state than the displacement-basedapproach. In the

lower stressedregion closerto the centerof the specimen,however,the stressdistributions

produced by the mixed-iterative method using the B3 mesh (Figures 9 and 11) tend to

oscillate about the convergedsolution. The oscillation vanisheswhen a finer mesh, i.e.,

B4, is used. Further investigationsto examinethe oscillating solutionswill be necessaryto

determine the underlying cause.

The mixed-iterative solutions shown in Figures 10 and 12, i.e., using meshB4, are

practically indistinguishable from the displacement-basedresults computed using the B5

mesh. In this case,the mixed-iterative proceduretakes88.1% of the computer time required

by the displacement-basedsolution. Considering the critical region, the mixed-iterative

solution obtained using the B3 meshhascomparableaccuracywith the displacement-based

result provided by meshB4. The former requires81.2 % of the computer time consumed

by the latter. Theseresults showthat the mixed-iterative procedureis capableof producing

solutionswith the samelevelof accuracyusing coarsermeshesand lesscomputation time.

Problem 3:

A clamped square plate with a center load of 2.875 Newtons is shown in Figure 3. This

plate bending problem has elastic-perfectly-plastic material with modulus of elasticity of

1092.0 GPa, Poisson's ratio of 0.3, and yield stress of 300.0 MPa. The thickness of the plate
w

is 0.1 ram. Due to symmetry, only a quarter of the plate is modeled in the finite element

mesh. The number of elements used in each level of mesh refinements are as follows:
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Mesh

CI 2x2 = 4

C2 4 x 4 - 16

C3 8 x 8 = 64

C4 16 x 16 = 256

C5 32 x 32 = i024

Number of Elements Number of Nodes

3x3 ---- 9

5x5 = 25

9x9 = 81

17 x 17 = 289

33 x 33 = 1089

As depicted by Figures 13 to 15, the mixed-iterative solutions tend to be less accurate

than the displacement-based results, both in stress and displacement. Stress distributions

produced by the mixed-iterative method using both the C3 and C4 meshes tend to oscillate

about the converged solution. The oscillation diminishes with increasing mesh refinements,

and vanishes when mesh C5 is used (not shown in the figures).

In this problem, the mixed-iterative process does not produce any improvement, but

degrades the displacement-based solutions. It might be that the strain-smoothing strat-

egy of the mixed-iterative analysis is unable to fully capture the more complex kinematic

relationships of plate bending. Further investigations on the method are necessary.

Conclusion

An elastic-plastic analysis algorithm has been implemented in a mixed-iterative finite

element code--MHOST. Membrane and bending behaviors of 4-node quadrilateral shell finite

element models are studied in the context of mixed-iterative elastic-plastic analysis. Using

displacement-based solutions as references, the effectiveness of the mixed-iterative method

is assessed.

The promising features of the mixed-iterative elastic-plastic analysis are clearly demon-

strated in membrane cases. Convergence is accelerated by approximately an order of mag-

nitude for the given problems and mesh-refinement schemes. This is accomplished with a

considerable saving of computer time. The time efficiency will be even higher if the time re-

quired for mesh generation is taken into consideration. Based on membrane performance, it

can be said that the mixed-iterative method presents a viable alternative to the conventional
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displacement-basedanalyses.This is especially true when limited computational resources

areavailable.

On the other hand, the limited test showsthat the performanceof the mixed-iterative

methodfor plate bendingis not encouraging.The algorithm seemsto produceadverseeffects

on the solution. A more comprehensivestudy is definitely necessarybefore any conclusive

judgement about the limitation of the mixed-iterative method can be made.
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Appendix A: Displacement-Based Procedure in MHOST

As part of its mixed-iterative scheme, MHOST employs a distinctive node-based data

structure designed to accommodate the mixed-iterative solution algorithm [Ref. 9]. Com-

puter memory is allocated to store nodal values of strain, stress, and constitutive coefficient

matrix, among other variables. Displacement-based codes, on the other hand, usually store

the corresponding element quantities. Utilizing the existing code organization, the option

for displacement-based analysis is made available by implementing the necessary code mod-

ifications as described below.

First of all, it should be mentioned that the existing code does provide a rudimentary

version of a displacement-based solver. This is achieved by simply terminating the mixed-

iterative procedure before any residual iteration is performed. The displacement, strain, and

stress obtained in this fashion are not erroneous, but often the nodal forces and support

reactions contain residuals that are not as negligibly small as those obtained using a true

displacement-based procedure. This can be explained further as follows. In the mixed-

iterative procedure, an intermediate value of strain at the element level is calculated (at

integration points), this is then projected to the nodes. The nodal values are stored in

the allocated memory. The evaluations of constitutive equations for stress are made and

stored at the nodes, using the smoothed (projected) values of the nodal strain. Element
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level forcesare computed using stressvaluesobtained by interpolating its nodal values--

the smoothed stress--to the integration points. In general, the smoothed stress violates

equilibrium conditions, hence the resulting element forces tend to produce quite significant

residuals. This residual error may sometimes convey the wrong impression that the entire

solutions are inaccurate.

From the perspective of the "traditional" displacement-based procedures, another dif-

ference of the code is that any computations beyond the stress recovery is automatically of

a mixed-iterative nature. Therefore, in the original MHOST, true displacement-based solu-

tions were obtained only for linear-elastic analysis, with strain-smoothing iterations and load

increments being prevented. For the above reasons, it seems appropriate to make available

a more generally applicable displacement-based procedure. It should be emphasized, how-

ever, the intention is not to make a displacement-based finite element code out of MHOST.

Rather, the purpose was to facilitate a true displacement-based analysis capability such that

a fair comparison with regard to computer time requirement can be made for this study. The

existing data structures and algorithms are utilized as much as possible. The modifications

implemented do not fundamentally alter the code--the mixed-iterative character remains

intact.

Basically, the set-up for the displacement-based analysis capability in MHOST involves

the modifications of the code as well as the users' input data. This is given as follows:

• Whenever the displacement-based option is activated, strain projection, nodal evalua-

tion of stress, and the interpolation of nodal stress to integration points are avoided.

Strain and stress are computed at the integration points, and stored in the computer

memory allocated as described next.

• In the finite element mesh, duplicate nodes must be used at all nodes connected to

adjacent elements. This should be such that each element has its own unique set of

nodes. In this manner, each element is provided with the necessary memory to store

integration-point quantities similar to the displacement-based codes. Hence, users are

required to bear the burden of modifying their mesh-generation procedures in order to

utilize this added capability.
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These modifications allow the displacement-based procedure to be performed without re-

striction to linear-elastic analysis only. It should be mentioned, however, that the use of

duplicate nodes increases computer time and memory requirements.

The displacement-based procedure is used to verify the elastic-plastic algorithm imple-

mented. The result is given in Appendix B. Furthermore, this facility allows the performance

of the mixed-iterative method to be assessed using the displacement-based analysis option

given by the same code. ttence, the comparison of the two methods is made with minimized

differences related to variations in programming techniques. It should be noted that the

additional computations incurred due to the use of duplicate nodes are not included in the

comparison.

Appendix B: Verification Of The Elastic-Plastic Algorithm

To assess its performance, first the elastic-plastic algorithm implemented in MHOST

is verified using displacement-based procedures. This benchmark testing is achieved using

the solutions obtained from MARC--a commercial displacement-based finite element code

[Ref. 10].

It is well known that the formulation of a particular element stiffness matrix has a

direct effect on the finite element solutions. Many different techniques in the stiffness formu-

lation have been developed to achieve better accuracy and efficiency. Arguably, depending

on its applications each particular element formulation has its own merits and drawbacks.

However, the intention here is not to evaluate which formulation is best--but just to state

the existing differences between MHOST and MARC with regard to their element stiffness

matrix formulations. This is relevant for the purpose of verifying the elastic-plastic algo-

rithm. Since it is necessary to eliminate as much of the differences pertaining to the codes

as possible -except of course the elastic-plastic algorithm of interest--in order to achieve a

meaningful comparison. For this reason, in the benchmark test for the elastic-plastic algo-

rithm, the element stiffness matrix of MHOST is modified to be identical to the one used in

MARC. Basically, this involves the modifications of the B matrix and the quadrature rules

used in the stiffness calculations. It should be emphasized, however, this modification is only
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made for the stated purpose. And, its application is restricted to the following benchmark

problem only.

problem A:

A cantilever plate of 200.0 mm thickness is subjected to uniformly distributed trans-

verse and inplane loads, ql and q2, respectively, along the right edge as shown in Figure

16. These loads are independently applied. The incremental sequence of the transverse load

applications is as follows: Increase the load to 32.0 Newtons, decrease it to -33.6 Newtons,

and re-load it to 35.0 Newtons. This sequence models loading, unloading, reverse loading

and re-loading. The inplane load is incrementally applied in the similar way: 180.0 Newtons,

-186.0 Newtons, and 190.0 Newtons. Both isotropic and kinematic hardening elastic-plastic

materials are considered for this problem, with the modulus of elasticity = 1.0 MPa, Pois-

son's ratio = 0.0, yield stress = 3.0 kPa, and the hardening slope = 1.0 % of the elastic

slope. Sixteen finite elements are used to model this problem.

The resulting displacement histories at point C, i.e., at the center of the right edge, are

shown in Figures 17 to 20. The isotropic hardening results show stiffening responses during

re-loading process, since Bauschinger effect is not considered. The kinematic hardening mod-

els provide more realistic solutions. For all the cases, MHOST produces practically identical

solutions as those given by MARC, both in bending (Figures 17 and 18) and membrane

(Figures 19 and 20) solutions. Although stress is usually the main interest to engineers,

however, comparing displacement results for the purpose of assessing the elastic-plastic al-

gorithm is considered sufficient. This is because in the incremental elastic-plastic analysis,

stresses significantly affect displacement results, i.e., small variations in stress produce no-

ticeable cumulative effects on displacement. Therefore, given the excellent agreement on the

displacement solutions of MHOST and MARC, it is conservative to say that the stresses

produced by the two codes should be in good agreement as well.

This verification problem serves to demonstrate the performance of the elastic-plastic

algorithm implemented in MHOST, for both bending and membrane behaviors. It should

be mentioned that the two codes use comparable computer times to solve the problem.
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Figure 1. The skewed cantilever used in problem i.
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